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Abstract 
Spoken language is an important and natural way for people 
to communicate with computers. Nonetheless, habitable, re-
liable, and efficient human-machine dialogue remains diffi-
cult to achieve. This paper describes a multi-threaded semi-
synchronous architecture for spoken dialogue systems. The 
focus here is on its utterance interpretation module. Unlike 
most architectures for spoken dialogue systems, this new 
one is designed to be robust to noisy speech recognition 
through earlier reliance on context, a mixture of rationales 
for interpretation, and fine-grained use of confidence 
measures. We report here on a pilot study that demonstrates 
its robust understanding of users’ objectives, and we com-
pare it with our earlier spoken dialogue system implemented 
in a traditional pipeline architecture. Substantial improve-
ments appear at all tested levels of recognizer performance. 

Introduction 
For people, the most natural way to interact with an agent 
is to speak. Dialogue between a person and a machine, 
however, does not allow people to speak naturally. Task-
oriented systems typically prompt users for short utteranc-
es, and prevent the natural give-and-take of human dia-
logue. A spoken dialogue system (SDS) works best when 
its automated speech recognition (ASR) is very accurate. 
The thesis of our work is that an SDS architecture should 
robustly accommodate noisy ASR, and should degrade 
gracefully as recognition errors increase. Thus the work 
described here helps an SDS help the user. The principal 
result of this paper is substantial performance improvement 
when a mixture of rationales is used to interpret what the 
speaker wants.  
 An SDS receives a continuous stream of acoustic data 
that ASR translates into discrete linguistic units, with its 
final output represented orthographically. Speech recog-
nizers rely on pre-existing acoustic models to relate acous-
tic energy to speech sounds, and on domain-specific lan-
guage models to predict which sequences of speech sounds 
correspond to known words. ASR output that seems unin-
telligible without context (e.g., “sooner sheep most die”) is 
readily resolved in the context of candidate database 
matches (e.g., the book titles Soon She Must Die, Why 
Someone Had to Die, and The Messenger Must Die.)  

 ASR has improved dramatically for single-party applica-
tions, such as mobile search and the transcription of broad-
cast news. Its accuracy in dialogue, however, lags substan-
tially, both in the transcription of interactions (Renals, 
Hain and Bourlard, 2008) and in real-time human-
computer SDSs (Leuski et al., 2006). The relatively poor 
ASR quality in SDSs intended for many users is partially 
responsible for the frustrating telephone conversations 
people often experience with them. However, people who 
play the role of an SDS during experiments interpret noisy 
ASR much better than machines do. Given real or simulat-
ed ASR output instead of the user’s speech during dia-
logue, human subjects engage in problem solving about the 
task, the ASR errors, or both (Rieser, Kruijff-Korbayová 
and Lemon, 2005; Skantze, 2003; Williams and Young, 
2004; Zollo, 1999).  
 FORRSooth is an SDS architecture designed to incorpo-
rate multiple strategies for utterance interpretation, includ-
ing greater reliance on the task context. The experiment 
described here demonstrates FORRSooth’s robust utter-
ance interpretation despite recognition error, and its supe-
riority to an existing SDS implemented in a traditional 
SDS architecture. The next section of this paper describes 
related work. Subsequent sections highlight the challenges 
of speech recognition for human-computer dialogue, and 
show how skilled people successfully interpret noisy 
recognition hypotheses in a dialogue setting. The paper 
then describes FORRSooth and reports on the pilot exper-
iment, which compares results against our earlier SDS. 

Related Work 
Dialogue systems must determine the semantic intent of 
user utterances. Although statistical methods are particular-
ly robust for interpreting noisy ASR (Gordon and 
Passonneau, 2010), they are most useful in application do-
mains where only the broad intent of an utterance is re-
quired (e.g., the virtual humans project (Leuski and Traum, 
2010)). Deeper methods (e.g., semantic parsing (Ward and 
Issar, 1994)) extract finer-grained concepts, but are less 
noise tolerant. In two-stage Natural Language Understand-
ing (NLU), statistical methods may process ASR output be-
fore deeper methods, such as semantic parsing. The AT&T 
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Spoken Language Understanding System (Gupta et al., 
2006) explicitly separates the overall intent of an utterance 
from the specific concepts it contains. For an overview of 
existing techniques, see (Bangalore, 2006). 
 Task-oriented dialogue systems must often search a da-
tabase with terms extracted from noisy ASR. To narrow 
the possible interpretations before search, decision trees 
have been used after a shallow semantic interpretation 
phase that classifies the utterance by query type or specific 
query slot (Komatani et al., 2005). Recent approaches use 
voice search to query a database directly with noisy ASR 
(Passonneau et al., 2010; Wang et al., 2008). 
 While there are many techniques for semantic interpreta-
tion in the literature, there is no single preferred approach. 
Dialogue systems rarely reuse and combine existing lin-
guistic resources and NLU approaches. FORRSooth relies 
on “multiple processes for interpreting utterances (e.g., 
structured parsing versus statistical techniques)” as in 
(Lemon, 2003), but uses a wider range of resources. 
 Architectures for human-computer dialogue have tradi-
tionally been pipeline-based (Raux et al., 2005). The un-
derstanding difficulties that inspired the work reported here 
arose in CheckItOut, our SDS based on the Olym-
pus/Ravenclaw architecture (Bohus and Rudnicky, 2009), 
which has been the basis for a dozen SDSs. Apart from the 
Apollo interaction manager (Raux and Eskenazi, 2007), 
data flows through CheckItOut in a pipeline. It uses the 
PocketSphinx speech recognizer (Huggins-Daines et al., 
2006), for which we adapted the freely available Wall 
Street Journal acoustic models with approximately 10 
hours of spontaneous speech. Then Phoenix, a robust con-
text-free grammar semantic parser processes ASR hypoth-
eses to identify NLU concepts (Ward and Issar, 1994). 
Next, Helios (Bohus and Rudnicky, 2002) an utterance-
level confidence annotator, identifies the best parse and 
passes it to the RavenClaw dialogue manager with a confi-
dence score (Bohus and Rudnicky, 2009). RavenClaw then 
chooses the next system action or utterance. 
 Alternatively, an SDS can be asynchronous (Allen, 
Ferguson and Stent, 2001). In the past decade, asynchro-
nous architectures have addressed incremental processing 
(Schlangen and Skantze, 2009), turn management (Raux 
and Eskenazi, 2007), a shared communication channel 
(Skantze and Gustafson, 2009), or a combination of them 
(Blaylock, Allen and Ferguson, 2002; Paek and Horvitz, 
2000). FORRSooth, our new architecture, is asynchronous. 

Speech Recognition Challenges in SDS 
Continuous speech recognition of spontaneous speech over 
a large vocabulary and by diverse speakers presents a ma-
jor challenge, particularly in the context of dialogue. Back-
ground noise or poor phone transmission quality also 
worsens recognition performance. These challenges are ev-
ident in the higher word error rate (WER) that deployed 
SDSs have compared with their WER during laboratory 
testing. For example, the WER reported by Carnegie 
Mellon University’s Let’s Go Public! went from 17% un-

der controlled conditions to 68% in the field (Raux et al., 
2005). Above a fixed, relatively low WER threshold, SDS 
performance typically degrades sharply (Leuski et al., 
2006). Our work seeks to develop methods that support ro-
bust utterance interpretation for large-vocabulary SDSs.  
 Spontaneous dialogue is difficult for speech recognizers 
because it exhibits utterance planning in progress, not the 
finished product of a prior plan (Ochs, 1979). A single ut-
terance can be started, stopped, or resumed for completion, 
repair, or complete reformulation. Performance phenomena 
such as halting speech, rephrasing, and pause fillers (um 
um, er), are frequent, and decrease recognition accuracy. 
Conversants indicate that they are listening with back-
channels, short, low-energy utterances (okay) or pause fill-
ers (umhm). Backchannel words are difficult for recogniz-
ers because they are brief and less clearly articulated. 
Moreover, the way human conversational partners take 
turns presents difficulties for recognizers. People frequent-
ly interrupt and speak over one another. Most recognizers 
ignore performance phenomena, and most SDSs lack ex-
plicit models of turn taking. Our long term goal is an archi-
tecture that encourages an SDS and its users to collaborate 
in the way that people do (Clark and Schaefer, 1989), so 
that they better understand one another. This requires more 
robust utterance interpretation.  

SDS Error-Handling Strategies  
When humans converse with each other, they engage in 
grounding to establish and convey the degree of mutual 
understanding. This consists of subtle collaborative behav-
iors to demonstrate continuously how well they understand 
each other (Clark and Schaefer, 1989). Because interpreta-
tion of imperfect speech recognition output is difficult, 
grounding in an SDS must often fall back on error-
handling strategies to resolve failures in its understanding. 
These strategies are far from human-like. Theoretically, 
when human dialogue participants are well grounded, 
grounding behavior at any one turn in the dialogue in-
volves little effort — a nod of the head and taking the next 
turn with no interruption can suffice. When there is poten-
tial confusion, they devote more effort to grounding — 
they may request and receive implicit or explicit confirma-
tion. We hypothesize that robust utterance interpretation is 
essential if an SDS is to engage in more human-like 
grounding behavior. 
 An SDS resorts to error-handling behavior when it lacks 
sufficient understanding of the user’s objectives, and can-
not otherwise advance the dialogue. SDS error-handling 
strategies for non-understanding, where the ASR is unin-
terpretable, include prompting the user to repeat or re-
phrase her last utterance. A more pernicious consequence 
of noisy ASR is misunderstanding, where the SDS misin-
terprets the user’s objective entirely. To avoid misunder-
standings of key information, an SDS will ask for explicit 
confirmation (“Did you say pick up the cup?”) or will con-
firm it implicitly (“Okay, the cup, and where would you 
like me to put it?”). Explicit confirmation brings the user 
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no closer to her goals, and makes dialogue tedious. Implicit 
confirmation is more likely to advance the conversational 
goals, and is less tedious. Human-human dialogue offers a 
much richer range of behaviors that present evidence of at 
least partial understanding.  
 We hypothesize that SDSs should aim for high-
confidence interpretation of noisy ASR in support of dia-
logue strategies that advance the dialogue, and should 
avoid explicit confirmation and requests for repetition 
when possible. Previous work has shown that people pre-
sented with simulated ASR and asked to simulate a dia-
logue system can compensate for recognition errors and 
address user objectives despite moderately high WER 
(Williams and Young, 2004). Given that people understand 
speech far better than machines do, we further hypothesize 
that good strategies for an SDS can be learned from the 
ways people attempt to resolve noisy ASR.  

Human Dialogue Strategies for Noisy ASR 
Our domain of investigation is the Andrew Heiskell Braille 
and Talking Book Library, a branch of The New York 
Public Library and part of The Library of Congress. 
Heiskell’s patrons order their books by telephone, during 
conversation with a librarian.  
 Wizard ablation captures the strategies people use to in-
terpret noisy ASR during dialogue (Levin and Passonneau, 
2006). In earlier work, we conducted novel experiments 
where a human (the wizard) was presented with real ASR 
output and database query results to provide context for in-
terpreting the ASR. In the first experiment (Passonneau, 
Epstein and Gordon, 2009), undergraduates were presented 
off-line with noisy ASR (WER = 0.69) from 50 book titles 
spoken by a single individual, along with a text file of 
Heiskell’s 71,166 titles. Subjects were asked to match each 
ASR string to a title without any time limit, a simulation of 
voice search. Although only 9% of the titles had no ASR 
errors, the subjects’ accuracy ranged from 67.7% to 71.7%. 
 This motivated a large-scale experiment to collect real-
time data from a single-turn exchange for 4200 book title 
requests with poor ASR (WER = 0.71). From among the 
voice search returns, seven wizard subjects could all identi-
fy correct matches reasonably well. Only two, however, 
could recognize when there was no match among the re-
turns (Passonneau et al., 2010; Ligorio et al., 2010a). We 
learned decision trees for these more proficient wizards us-
ing runtime system features, and features that represented 
what the wizards saw on a customized graphical user inter-
face. The learned trees included speech recognition metrics 
(e.g., speech rate and acoustic model fit). Although most 
SDSs rely only on a single confidence score to trigger er-
ror-handling, these results suggest that an SDS architecture 
should incorporate more fine-grained measures of confi-
dence (Passonneau et al., 2010). 
 Our most recent wizard experiment collected 913 full 
dialogues between 6 wizards and 10 callers, with up to 4 
book requests by author, title, or catalogue number (Li-
gorio et al., 2010b). The databases included all 5028 active 

patrons, 71,166 titles and 28,031 authors. Our statistical 
language model was built from a pseudo-corpus of domain 
utterances plus 3000 randomly selected book titles, their 
author names, and 50 patron names. From our initial data 
analysis, it is clear that two of the wizards succeeded more 
often at identifying the requested books, and that they re-
lied on quite different strategies to do so. One focused 
more on the task and rarely confirmed information explicit-
ly, while the other focused more on the communication and 
often confirmed explicitly (Ligorio et al., 2010b).  
 

FORRSooth 
FORRSooth, our new architecture for task-oriented hu-
man-computer dialogue, is intended to interact effectively 
“without the luxury of perfect [ASR]” (Paek and Horvitz, 
2000). The high redundancy in human language makes ef-
fective human-human communication possible without 
perfect comprehension of the audio signal. FORRSooth 
exploits this redundancy for human-machine communica-
tion. Here we briefly introduce the architecture, and focus 
on details of the interpretation service.  
 FORRSooth is based on FORR (FOr the Right Reasons), 
an architecture for learning and problem solving (Epstein, 
1994). FORR uses diverse (often conflicting) rationales to 
make decisions. It is intended for domains where multiple 
rationales and sequences of decisions are used to solve 
problems. Implementations have proved robust in game 
learning, simulated pathfinding, and constraint solving.  
 FORR relies on an adaptive, hierarchical mixture of re-
source-bounded procedures called Advisors. Each Advisor 
embodies a decision rationale. Advisors’ opinions (com-
ments) are combined to arrive at a decision. Each comment 
pairs an action with a strength that indicates some degree 
of support for or opposition to that action. An Advisor may 
make multiple comments at once, and may base them upon 
descriptives. A descriptive is a shared data structure that is 
computed on demand and refreshed only when required. 
For each decision, FORR consults three tiers of Advisors 
one at a time until one tier decides. A learned, weighted 
majority produces decisions in tier 3.  
 FORRSooth is a parallelized version of the mixture of 
experts embodied in FORR. FORRSooth models task-
oriented dialogue with six FORR-based services that oper-
ate simultaneously: Interaction, Interpretation, Satisfaction, 
Grounding, Generation, and Discourse. (We do not expect 
to exploit the Generation service fully. It converts a con-
ceptual representation of a system’s response into words. 
Instead, we will rely largely on template generation similar 
to that in CheckItOut.) These services interpret user utter-
ances with respect to system expectations, manage the 
conversational floor, and consider competing hypotheses, 
partial understandings, and alternative courses of action 
simultaneously. All services have access to the same data, 
represented by descriptives.  
 FORRSooth’s Interpretation service will provide a foun-
dation for rich grounding behavior, so that an SDS can re-
spond to each new user utterance with enough understand-
ing to advance the dialogue. Richer grounding strategies 
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depend on richer utterance interpretation. Therefore devel-
opment of FORRSooth has begun with the Interpretation 
service, which relies on a mixture of shallow and deep ap-
proaches to utterance interpretation. Voice search is a shal-
low resource. In earlier work on CheckItOut, we improved 
performance with a more syntactic analysis of book titles. 
This used Phoenix context-free grammar productions that 
were automatically mapped from MICA parses (Bangalore 
et al., 2009) of the book title database. The pilot described 
here used only tier-3 Advisors, which are ideally suited to 
accommodate a growing collection of heuristic interpreta-
tion strategies. 
 FORRSooth represents its expectations about what the 
user will say next as agreements with targets, variables 
that must be bound to achieve the task. For example, a pa-
tron identity agreement has a library patron identity target. 
Advisors process ASR hypotheses to produce comments 
about the content and intent of an utterance. Comments are 
affixed to a target graph that represents dependencies 
among agreements and targets, such as the fact that patrons 
have names. The target graph facilitates reasoning over 
partial understandings. It collects competing hypotheses 
for target nodes, and represents how hypotheses can be 
combined for database search with partial matching. In this 
way the system can postulate a user’s identity from its hy-
potheses. Multiple hypotheses for a given target can also 
be merged and strengthened. 

Experimental Design and Results 
Wizard studies demonstrate that clever strategies can suc-
cessfully interpret noisy ASR. Our initial focus for the In-
terpretation service in FORRSooth is on robust interpreta-
tion of responses to system prompts followed by a database 
query. We work with a partial interpretation of the full ut-
terance using a suite of NLU resources. FORRSooth’s tar-
get graph represents prior knowledge about the information 
it has just requested. (FORRSooth will eventually reason 
deeply about targets for a wide range of activities.) 
 This experiment studies the robustness of the Interpreta-
tion service for author names under worst-case realistic 
ASR performance. We compare FORRSooth’s perfor-
mance with a simulation of the language-interpretation 
phase of CheckItOut. The pilot used the PocketSphinx 
speech recognizer, CheckItOut’s acoustic models, the full 
database of 5,000 active patrons, a random selection of 
4000 titles and their 2306 authors for constructing the book 
title grammar, and the same type of statistical language 
model described earlier.  
 To generate input, one male and one female experiment-
er each read the same list of 100 randomly selected patron 
names into the speech recognizer. The Interpretation Advi-
sors processed the resulting ASR output to propose hy-
potheses for the patron name. Our pilot presented three 
kinds of information from ASR results to Interpretation 
Advisors: the highest ranked recognition hypothesis (from 
an n-best list), utterance confidence, and word-level recog-
nition confidence. The pilot used 10 Interpretation Advi-

sors to bind values to the target graph for the patron’s iden-
tity: 8 to produce hypotheses and 2 to embellish them.  
 Interpretation Advisors used a suite of NLU resources. 
The simplest Advisors relied on voice search to bind val-
ues for the patron’s name to the target graph. These Advi-
sors retrieved database records where the similarity score 
between the recognition hypothesis and the name field ex-
ceeded a threshold. Similarity was computed by 
Ratcliff/Obershelp (R/O) pattern matching: the ratio of the 
number of matching characters in two strings to their com-
bined length (Ratcliff and Metzener, 1988). (For example, 
R/O is 0.61 for ROLL DWELL against Robert Lowell.) 
Comment strength was a function of word-level recogni-
tion confidence, similarity score, and a metric on the rela-
tive position and edit distance between words in the recog-
nition hypothesis and the database match. Some Interpreta-
tion Advisors used SoundEx and DoubleMetaphone simi-
larity metrics to perform phonetic partial matching.  
 Meanwhile, the parsing Advisors used Phoenix to con-
struct comments whose strength was a function of overall 
recognition confidence, word level confidence, and the 
proportion of words not consumed by the parse. One pars-
ing Advisor used Phoenix directly; another used Phoenix 
but included the low-confidence words that are not parsed 
by default, and reported lower comment strength. Yet an-
other parsing Advisor re-ranked Phoenix parses with the 
Helios confidence annotator, and reported the Helios score 
(which includes ASR confidence) as its comment strength.  
 One Advisor duplicated the tools available to our wiz-
ards; it combined voice search and parsing, and refined the 
search query after several passes with fine-grained confi-
dence scoring that reflected the lexical and phonetic simi-
larity of the names. This Advisor performed multiple-
partial-matching database queries using different segments 
of the ASR and proposed its best hypotheses selected from 
the query returns. Another Advisor relied on a learned 
classifier before any database query to remove from the 
ASR words likely to correspond to noise. Finally, two Ad-
visors combined first and last name concepts into full 
names, and retrieved corresponding database entities. 
 A separate run on the same input used one Advisor to 
simulate CheckItOut’s entire language interpretation pipe-
line. That Advisor invoked Phoenix, Helios, and, after the 
parse, an R/O database query with the top-ranked parse. 
Note that because Phoenix skips words it cannot parse, a 
database query with parse results is not pure voice search. 
 For the ASR, the WER (computed as average normal-

Figure 1: Accuracy at varying WERs. 
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ized Levenshtein distance for words) was 0.44 (0.48 for the 
female speaker, 0.39 for the male). The character-level er-
ror rate was much lower, at 0.23 (0.26 female, 0.20 
male)—evidence that fuzzy matches of ASR output to 
known words could be constructive. The accuracy of 
FORRSooth’s top-ranked hypothesis was 0.78 (0.73 fe-
male; 0.83 male), and the accuracy of its top two hypothe-
ses was 0.82 (0.77 female, 0.87 male). Without the 78 cas-
es of perfect recognition (out of 200 total), WER was 0.72 
(0.77 female, 0.66 male), and FORRSooth accuracy was 
0.64 (0.59 female, 0.71 male).   
 Figure 1 compares the performance of the FORRSooth 
suite of Advisors with the CheckItOut simulation at 4 lev-
els of WER. Most utterances had low WER, and the rest 
were roughly evenly distributed over the remaining three 
levels: 0 < WER ≤ 0.2 (N=119), 0.2 < WER ≤ 0.4 (N=35), 
0.4 < WER ≤ 0.6 (N=30), 0.6 < WER ≤ ∞ (N=27). At all 
WER levels, the FORRSooth pilot outperformed 
CheckItOut by a large margin.  
 Table 1 illustrates a variety of ways in which poor ASR 
challenges an SDS. It shows two positive (P) examples 
where Interpretation successfully identified the patron 
name, and two negative (N) examples. Rank is the position 
in FORRSooth’s n-best list of hypotheses. The Interpreta-
tion score is the weighted combination of comment 
strengths for the Advisors that supported the hypothesis. 
CheckItOut’s interpretation is in the last column along with 
the Helios confidence score. 
  In example 1P, multiple rationales compensate for 
recognition error. FORRSooth’s voice search Advisors de-
termined that both Edward Martinez and Edward Emerson 
were similar to the ASR. (Edward Emerson was slightly 
closer.) When the phonetic Advisors voted in favor of Ed-
ward Martinez, however, FORRSooth reached the correct 
interpretation. In contrast, CheckItOut produced a high-
confidence incorrect hypothesis based solely on R/O score. 
In 2P, FORRSooth’s confidence was high despite low ASR 
confidence, because of high phonetic similarity. 
CheckItOut does not parse words with low confidence (in-
dicated by a period before and after each unconfident 
word). This non-understanding would drive CheckItOut to 
ask the caller’s name again.  In 3N, FORRSooth and 
CheckItOut prefer the same (incorrect) hypothesis, but 
CheckItOut has no alternatives. In a full FORRSooth sys-
tem, Grounding will respond to the user based on the full 
target graph. Given the matching first names of the top two 
hypotheses, and the phonetic similarity of the two last 
names (Bouie and Bailey), a grounding Advisor would 
confirm the first name implicitly and disambiguate the last 

name with a simple Yes/No question: “Hi, Mildred, was 
that Bouie?” In 4N, FORRSooth has two nearly tied hy-
potheses with identical first names, but dissimilar last 
names. This would lead to a full re-prompt for the last 
name (“Okay, David, and your last name again please?”). 
In both cases, CheckItOut would have asked the caller’s 
name again. 
 FORR learns weights for tier-3 Advisors (Epstein and 
Petrovic, 2006). In the absence of training data, we manu-
ally determined weights for this experiment based on rough 
a priori estimates of Advisors’ reliabilities. Our results in-
dicate the effectiveness of using tier-3 Advisors to combine 
different sources of NLU and interpretation strategies, even 
with estimated weights. Our current work includes learned 
weights for Advisors, and the development of grounding 
Advisors to exploit partial interpretations. 

Conclusion 
This paper presents FORRSooth, a new SDS architecture 
that supports robust utterance interpretation.  The pipeline 
architecture of our existing SDS, CheckItOut, limits its 
ability to interpret utterances. CheckItOut must map ASR 
output to concepts before it invokes the dialogue manager 
to initiate database queries. To avoid misunderstandings, 
CheckItOut rejects ASR with poor recognition confidence 
before semantic interpretation, and produces one confi-
dence score on a single semantic interpretation. 
 FORRSooth replaces the conventional SDS pipeline 
with a set of utterance interpretation strategies, and pro-
vides multiple sources of information for subsequent dia-
logue management decisions. It also produces a graph of 
interpretation hypotheses, and computes finer-grained con-
fidence results that incorporate a wide variety of interpreta-
tion resources. Our results illustrate the merits of this ap-
proach for the interpretation of noisy ASR.  
 The ease with which we separately reconstructed 
CheckItOut’s NLU pipeline within a single FORRSooth 
Advisor demonstrates the new architecture’s versatility. 
Our pilot results demonstrate the potential for more nu-
anced grounding behavior from an SDS, and the benefits of 
employing a mixture of strategies to help a system under-
stand its user better. 
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Table 1: Examples of patron name interpretation with recognition and interpretation confidence. 
 Name ASR with confidence Rank FORRSooth with Interp. score  CheckItOut with Helios conf. 

1P Edward Martinez edward martson  0.33 1 in 2 Edward Martinez  1.48 Edward Emerson 0.82 
2P Helen Harris .hellen. .heiress. 0.22 1 in 6 Helen Harris  2.65 NULL NULL 
3N Mildred Bailey mildred bouie 0.67 1 in 5 Mildred Bouie  4.61 Mildred Bouie 1.00 

    2 in 5 Mildred Bailey  2.32 N/A  N/A 
4N David Davis david did 0.67 1 in 7 David Said 2.60 N/A N/A 

   2 in 7 David Davis 2.44 NULL  NULL 
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